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Abstract
Network virtualization (NV) enables efficient management of phys-
ical network (PN) resources by partitioning them into virtual data
center requests (VDCRs), consisting of interconnected virtual ma-
chines (VMs) and virtual links (VLs). A key challenge inNV is virtual
data center embedding (VDCE), which allocates PN resources to
VMs and VLs and is NP-hard problem. Existing VDCE strategies
often fail to balance energy efficiency and resource distribution,
leading to sub-optimal solutions with higher energy consumption
in data centers (DCs). This work presents LitE, a load-balanced
VDCE strategy focused on minimizing energy consumption in
single-domain PN. LitE uses a resource management strategy that
considers server utilization, overloading probability, and energy
consumption to select suitable servers for VM embedding. It then
applies Dijkstra’s shortest path algorithm for VL embedding to opti-
mize energy use. Experiments show LitE improves energy efficiency
by 15% compared to baseline methods through better resource uti-
lization.
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1 Introduction
Network virtualization (NV) is a crucial enabler for the growing
demands of modern Internet technology. It offers benefits such as
isolation, improved physical network (PN) utilization, and security
[1, 16]. By leveraging NV, service providers (SPs) can logically par-
tition PN resources into independent virtual data center requests
(VDCRs), allowing for more efficient management of network re-
sources. For instance, Fig. 1 represents the VDCR belonging to
a sample real-time applications such as hosting websites, online
games, and video streaming from geographically distributed users
[10]. In Fig. 1, VDCR comprises four virtual machines (VMs) and
four interconnected virtual links (VLs). The numerical value 4 as-
sociated with VM 𝑣1,1 represents its resource demand regarding
computational resource blocks (CRBs). One CRB unit equating to
one CPU core and 512 MB of RAM [16, 18]. Similarly, the numer-
als associated with VLs represent the minimum communication
bandwidth demand. One of the primary challenges in NV is allo-
cating the required physical resources to VDCR components, i.e.,
VMs and VLs. This process is known as virtual data center embed-
ding (VDCE). It comprises two sub-problems: first, VM embedding,
which involves assigning server resources to VMs, and second, VL
embedding, which maps physical paths to the VLs connecting VMs.
Both of these sub-problems are proven to be NP hard [7] [17].

Figure 1: An instance of a virtual data center request.

To address this problem, many recent VDCE approaches focus on
achieving objectives such as improving the revenue-to-cost ratio
[16], increasing acceptance ratio [16], minimizing embedding costs
[14], and energy minimization [8, 19]. However, these approaches
overlook the importance of effective load distribution to achieve
energy minimization in data centers (DCs), which is essential for
modern Internet technology. In this regard, few research works
have been conducted to address this objective of the VDCE problem.
Fischer et al. in [4] introduced a strategy to map multiple VMs onto

https://orcid.org/0009-0008-6883-2432
https://orcid.org/0000-0001-8166-2847
https://orcid.org/0000-0002-1630-7934
https://orcid.org/0000-0001-5428-0851
https://doi.org/10.1145/3700838.3700849
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3700838.3700849


ICDCN 2025, January 04–07, 2025, Hyderabad, India Preetham. N et al.

the same physical server, preferring a server with lower power con-
sumption and selecting energy-efficient paths. However, it failed to
account for resource load dependency and scalability under over-
loaded conditions, leading to poor resource utilization and Quality
of Service (QoS). To address this limitation, Rodriguez et al. in [13]
proposed power-on-demand and live migration to minimize en-
ergy consumption while ensuring QoS and balancing the network
load. However, it consumes high execution time and computational
overhead due to frequent migrations. Further, Zhang et al. in [19] de-
veloped a VDCE strategy to improve energy by leveraging Gaussian
distribution and diurnal patterns. Although it achieved energy sav-
ings, it faced challenges with modeling complexity and consumes
more execution time for more extensive networks. The authors Lin
et al. in [8] proposed a VDCE approach using an Integer Linear
Programming (ILP) formulation to minimize costs. However, it is
computationally complex and limited to smaller scenarios. Later,
Pham et al. in [12] introduced a congestion-aware and energy-aware
embedding strategy using the weighted constraint method. It tries
to minimize the energy by putting inactive servers to sleep and
mitigating congestion by dispersing traffic across multiple paths.
However, it exhibited inefficiencies due to a fixed congestion ratio,
resulting in degraded performance. On the other hand, the authors
in [5] presented the embedding strategy by combining spectral
clustering with field theory. This model enhanced network perfor-
mance but faced clustering complexity, which led to underutilized
resources. Additionally, the authors of [3] claim that the DC servers
often operate at only 15−20% of CPU capacity despite consuming
up to 70% of their peak energy when idle, leading to inefficiency
and higher operational costs. Further, Amazon reports that 42% of
its operational costs are due to DC energy use [15]. Globally, ICT
infrastructure consumes 10% of the world’s energy, with US DC
alone consuming 1.4% of national electricity in 2010 and 1.8% in
2014. IT energy consumption could reach 13% by 2030, with DC
electricity usage by 15−20% annually [11].
From the above literature, the following limitations still exist: (i.)
Existing works are less scalable (ii.) More energy consumption due to
poorer embedding mechanism (iii.) Computationally complex model
(iv.) Increased execution time and (v.) Lack of effective load distribu-
tion leads to poor PN utilization. In order to tackle these limitations,
this work introduces a greedy-based, two-stage heuristic VDCE
approach called LitE. The key contributions of this work are as
follows: (1.) This work introduces a framework called LitE for the
VDCE problem. It generates a spine-leaf topology-based PN, typ-
ically called a full-meshed Clos architecture [16]. The proposed
work aims to minimize the overall energy consumption in DC
through effective load-balancing and thereby improve the overall
performance of the network. (2.) LitE offers an efficient resource
management (ERM) component to evaluate the VM embedding
benefits of the server by considering server utilization, server over-
loading probability, and server energy consumption. Using this
embedding data, VM embedding is carried out, followed by a VL
embedding using Dijkstra’s shortest path algorithm. (3.) To test LitE
effectiveness, we integrated three state-of-the-art VDCE strategies
(i.) Congestion-Aware, Energy-Aware Virtual Network Embedding
(CEVNE) [12], (ii.) Dynamic Region of Interest (DROI) [5] and (iii.)
First Fit algorithm. Simulation results show that LitE improves
DC overall energy efficiency by minimizing up to 15% of energy

consumption compared to baselines while improving PN resource
utilization through load-balancing.

2 System Model
This section provides a detailed overview of the LitE architecture
as depicted in Fig. 2 and its components, such as virtual data center
request, physical network, and manager module.

Figure 2: The proposed LitE architecture and its components.

Virtual Data Center Request (VDCR): A pool of VDCRs to be
embedded is captured in the set as G𝑣= {G1,G2, . . . ,G𝑖 , . . .}. Each
VDCR G𝑖 ∈ G𝑣 is represented as an undirected weighted graph
and captured in G𝑖=(N𝑖 ,L𝑖 ), where N𝑖=

{
𝑣𝑖,1, 𝑣𝑖,2, . . .

}
is the set of

VMs and |N𝑖 | captures the aggregate number of VMs. Similarly,
L𝑖=

{
𝑒𝑖1,1, 𝑒

𝑖
1,2, . . . , 𝑒

𝑖
𝑗, 𝑗 ′ , . . .

}
is the set of VLs and |L𝑖 | denote the

total number of VLs. Let 𝑟𝑖, 𝑗 be the resource demand of a VM
𝑣𝑖, 𝑗 ∈ N𝑖 expressed in the form of CRB demand. On the other hand,
the bandwidth resource demand of a VL 𝑒𝑖

𝑗, 𝑗 ′ ∈ L𝑖 between VMs
𝑣𝑖, 𝑗 and 𝑣𝑖, 𝑗 ′ is captured as 𝑟 (𝑒𝑖

𝑗, 𝑗 ′ ).
Physical Network (PN): The spine-leaf topology-based PN is
modeled as an undirected weighted graph G𝑝=(N𝑝 ,L𝑝 ). The set of
nodes captured in N𝑝=N𝑠 ∪ N𝑟 , where N𝑠 is the set of servers,
i.e., N𝑠= {𝑠1, 𝑠2, 𝑠𝑘 , . . .}, and N𝑟={N𝑠𝑙 ,N𝑙𝑙 } represents the set of
routers/switches at each layer. Note that an entry 𝑠𝑠𝑝 ∈ N𝑠𝑙 can
be identified as a spine switch (from the superscript ‘s’), whereas
the subscript ‘p’ indicates a number of spine switch. Similarly, an
entry 𝑠𝑙𝑝,𝑞 ∈ N𝑙𝑙 specifies a leaf switch ‘q’ connected to the spine
switch ‘p’. Note that the superscript ‘l’ indicates that the switch
corresponds to the leaf layer. The initial and residual available CRB
capacity of a server 𝑠𝑘 ∈ N𝑠 is represented as 𝑐a

𝑘
and 𝑐r

𝑘
, respec-

tively. It is assumed that the switches have very limited comput-
ing power, merely enough to handle packet forwarding. The set
L𝑝= {𝑒1, 𝑒2, 𝑒𝑙 , . . .} captures the physical links, wherein each link
𝑒𝑙 ∈ L𝑝 has an available bandwidth capacity 𝑐 (𝑒𝑙 ). Successfully
embedding a VL means finding a suitable physical path meeting
bandwidth requirements. Let 𝑃𝑠𝑘 ,𝑠𝑘′ be the set of all simple paths
between servers 𝑠𝑘 and 𝑠𝑘 ′ of which VMs 𝑣𝑖, 𝑗 and 𝑣𝑖, 𝑗 ′ mapped
respectively. A specific path 𝑝𝑠𝑘 ,𝑠𝑘′ ∈ 𝑃𝑠𝑘 ,𝑠𝑘′ which consists of
multiple physical links, can successfully embed the VL 𝑒𝑖

𝑗, 𝑗 ′ , iff,
𝑐 (𝑒𝑙 ) ≥ 𝑟 (𝑒𝑖

𝑗, 𝑗 ′ ),∀𝑒𝑙 ∈ 𝑝𝑠𝑘 ,𝑠𝑘′ .
Manger Module: This module comprises the ERM and embed-
ding components. The ERM is responsible for determining the
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most suitable server for each VM, focusing on two key factors: (i.)
Energy-efficient utilization and (ii.) Efficient resource distribution.
An approximate linear or sub-linear correlation exists between the
energy consumption of a server and its resource utilization [2]. Con-
sequently, we start with estimating the energy consumption of each
server. This estimation is based on the server’s idle and full energy
levels, scaled by its resource utilization. ERM selects the server with
the lowest computed energy consumption for VM embedding. The
second aspect is assessed through the server overloading probability
and is computed using the resource’s mean and standard deviation
across servers in the DC. The server with the lowest overloading
probability is selected to balance the server’s resource load. Hence,
it ensures the best distribution of workloads across the DC. Finally,
the ERM component considers a server with minimum energy con-
sumption and minimum overloading probability to ensure that the
most suitable server is chosen for VM placement. Subsequently, the
embedding component leverages server information from the ERM
to perform two-stage VM embedding followed by a VL embedding
using Dijkstra’s shortest path algorithm [6]. The manager module
is also responsible for tracking the acceptance and rejection status
of VDCRs, as well as monitoring the current status of available and
used PN resources.

3 Problem Formulation
This section delivers the formulation of LitE objective and its asso-
ciated constraints.
Minimization of Energy: To minimize overall energy usage in
the DC, the server with the lowest energy consumption is selected.
The server 𝑠𝑘 ’s energy consumption E𝑘 (Uk) is calculated based on
its idle and full energy usage scaled by its resource utilization. The
same is defined in Eq. (1), where U𝑘 holds the resource utilization
of a server 𝑠𝑘 , and it is computed using Eq. (2). It is the ratio of the
overall resource demand 𝑟𝑖, 𝑗 of VMs across all VDCRs embedded
on the server 𝑠𝑘 to the available resource capacity 𝑐a

𝑘
of 𝑠𝑘 .

E𝑘 (Uk)=Eidle𝑘
+ (Efull

𝑘
− Eidle

𝑘
) ∗ Uk (1)

U𝑘 =

∑ |𝐺𝑣 |
𝑖

∑ |𝑁 𝑖 |
𝑗

𝑟𝑖, 𝑗

𝑐𝑎
𝑘

,∀Y(𝑣𝑖, 𝑗 , 𝑠𝑘 ) = 1 𝑠𝑘 ∈ N𝑠 (2)

The energy consumption of a server 𝑠𝑘 operating at full capacity of
resource is denoted as Efull

𝑘
=300𝑊 . It is important to highlight that

a server continues to consume energy even when it is not handling
any load. Hence this idle energy consumption is represented by
Eidle
𝑘

=150𝑊 . Therefore, the overall objective of LitE is represented
in Eq. (3a), subject to diverse constraints in Eqs. (3b) to (3f).

min
|N𝑠 |∑︁
𝑘∈N𝑠

E𝑘 (Uk ) (3a)

s.t. 𝑟𝑖,𝑗 ≤ 𝑐r
𝑘

(3b)

𝑟 (𝑒𝑖
𝑗,𝑗 ′ ) ≤ 𝑐 (𝑒𝑙 ) ; ∀𝑒𝑙 ∈ 𝑝𝑠𝑘 ,𝑠𝑘′ (3c)

Y(𝑣𝑖,𝑗 , 𝑠𝑘 ) =
{
1 if 𝑣𝑖,𝑗 is assigned to 𝑠𝑘
0 otherwise

(3d)

Y(𝑒𝑖
𝑗,𝑗 ′ , 𝑝𝑠𝑘 ,𝑠𝑘′ ) =

{
1 if 𝑐 (𝑒𝑙 ) ≥ 𝑟 (𝑒𝑖

𝑗,𝑗 ′ ), ∀𝑒𝑙 ∈ 𝑝𝑠𝑘 ,𝑠𝑘′

0 otherwise
(3e)

Y(𝑣𝑖,𝑗 , 𝑠𝑘 ) ∧ Y(𝑣𝑖,𝑗 ′ , 𝑠𝑘 ) ≠ 1 (3f)

Algorithm 1: Embedding Strategy (ES)
Input: G𝑣 , G𝑝
Result: M
Initialize: 𝑐r

𝑘
= 𝑐a

𝑘
, ∀𝑠𝑘 ∈ N𝑠 ; 𝜆 (𝑣𝑖,𝑗 ) = Φ, ∀𝑣𝑖,𝑗 ∈ N𝑖 ;

𝜆 (𝑠𝑘 ) = Φ, ∀𝑠𝑘 ∈ N𝑠 ; free[𝑣𝑖,𝑗 ] =𝑇
1 for each G𝑖 ∈ G′

𝑣 do
2 free[G𝑖 ] =𝑇
3 G′

𝑣 = Arrival(G𝑣 )
4 while G′

𝑣 ≠ Φ do
5 G𝑖 = First(G′

𝑣 )
6 while ∃𝑣𝑖,𝑗 ∈ G𝑖 | 𝑓 𝑟𝑒𝑒 [𝑣𝑖,𝑗 ] = 𝑇 do
7 Γmin = ∞ ; // Tracks the server with minimum energy cost

8 𝑠𝑏𝑒𝑠𝑡 = Φ ; // Initialize best server as null initially

9 for each 𝑠𝑘 ∈ N𝑠 do
10 if 𝑟𝑖,𝑗 ≤ 𝑐r

𝑘
and Y(𝑣𝑖,𝑗 , 𝑠𝑏𝑒𝑠𝑡 ) ∧ Y(𝑣𝑖,𝑗 ′ , 𝑠𝑏𝑒𝑠𝑡 ) ≠ 1 then

11 U𝑘 =

∑|G𝑣 |
𝑖

∑|N𝑖 |
𝑗

𝑟𝑖,𝑗

𝑐𝑎
𝑘

12 𝜇 = 1
|N𝑠 |

∑|N𝑠 |
𝑖=1 𝑐r

𝑘

13 𝛿 =

√︃
1

|N𝑠 |−1
∑|N𝑠 |

𝑖=1 (𝑐r
𝑘
− 𝜇 )2

14 P(𝑠𝑘 ) = 1 − Φ

(
𝑐r
𝑘
−𝑟𝑖,𝑗 −𝜇
𝛿

)
15 E𝑘 (U𝑘 ) = Eidle𝑘

+ (Efull
𝑘

− Eidle
𝑘

) ∗ U𝑘
16 Γk = E𝑘 (U𝑘 ) ∗ 𝑒𝛼 ·P(𝑠𝑘 )

17 if Γk < Γmin then
18 𝑠𝑏𝑒𝑠𝑡 = 𝑠𝑘
19 Γmin = Γk

20 if 𝑠𝑏𝑒𝑠𝑡 ≠ Φ then
21 Assign 𝑣𝑖,𝑗 to 𝑠𝑏𝑒𝑠𝑡
22 𝑐r

𝑘
= 𝑐r

𝑘
− 𝑟𝑖,𝑗

23 Y(𝑣𝑖,𝑗 , 𝑠𝑏𝑒𝑠𝑡 ) = 1
24 else
25 reject[G𝑖 ] =𝑇
26 Release_Resources(G𝑖 )
27 break;

28 foreach 𝑒𝑖
𝑗,𝑗 ′ ∈ L𝑖 do

29 if Feasible_Path(M(𝑣𝑖,𝑗 ),M(𝑣𝑖,𝑗 ′ ), 𝑟 (𝑒𝑖𝑗,𝑗 ′ ) ) then
30 Reserve_Path(M(𝑣𝑖,𝑗 ),M(𝑣𝑖,𝑗 ′ ), 𝑟 (𝑒𝑖𝑗,𝑗 ′ ) )
31 else
32 reject[G𝑖 ] =𝑇
33 free[G𝑖 ] = 𝐹

34 Release_Resources(G𝑖 )
35 break;

36 return M

Condition (3b) ensures that a VM 𝑣𝑖, 𝑗 ∈ N𝑖 with resource demand
𝑟𝑖, 𝑗 is assigned to a server 𝑠𝑘 only if the available residual resources
𝑐r
𝑘
of the server 𝑠𝑘 are sufficient to satisfy the demand. Condition

(3c) ensures a VL 𝑒𝑖
𝑗, 𝑗 ′ ∈ L𝑖 , connecting VMs 𝑣𝑖, 𝑗 and 𝑣𝑖, 𝑗 ′ , meets

the bandwidth demand 𝑟 (𝑒𝑖
𝑗, 𝑗 ′ ) over the physical path 𝑝𝑠𝑘 ,𝑠𝑘′ . These

conditions prevent resource contention and embedding failures by
ensuring VMs and VLs demand do not exceed resource limits. Addi-
tionally, we define the node indicator variable as in condition (3d),
it is set to 1, in case VM 𝑣𝑖, 𝑗 is assigned to server 𝑠𝑘 , otherwise, set
to 0. Similarly, forY(𝑣𝑖, 𝑗 , 𝑠𝑘 )=1 andY(𝑣𝑖, 𝑗 ′ , 𝑠𝑘 ′ )=1, we define a path
indicator variable Y(𝑒𝑖

𝑗, 𝑗 ′ , 𝑝𝑠𝑘 ,𝑠𝑘′ ) as in condition (3e). Condition
(3f) ensures no VMs from the same VDCR are placed on the same
server; it helps in preventing a single point of server failure and
supporting distributed services [16].
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4 Proposed Solution Approach
The proposed embedding strategy (ES) in LitE as illustrated in Algo-
rithm 1, takes VDCRs G𝑣 and PN G𝑝 as an input. In the beginning,
available server resource 𝑐a

𝑘
is initialized to 𝑐r

𝑘
. Mappings of all VM

𝜆(𝑣𝑖, 𝑗 ) and server 𝜆(𝑠𝑘 ) are initialized to null. The algorithm marks
all VMs of the VDCRs as free, i.e., free[𝑣𝑖, 𝑗 ] = 𝑇𝑟𝑢𝑒 . Initially, the
algorithm marks all the VDCRs are free by initializing free[G𝑖 ]
= 𝑇𝑟𝑢𝑒 from Steps (1-2). The VDCR is processed in the order of
their arrival, and the same is captured in G′𝑣 from Step (3) of al-
gorithm 1. The VDCR to be processed is not empty; then the first
VDCR is picked and assigned to G𝑖 from Steps (4-5) of algorithm 1.
Initially, Γmin is set to ∞ and 𝑠best is set to Φ to represent that no
server has been selected and no minimum energy cost has been
determined yet. These values are updated as the algorithm evalu-
ates each server’s energy consumption and overloading probability
from Steps (7-8) of algorithm 1. From Steps (9-15) of algorithm 1,
for each server we compute server resource utilization U𝑘 , mean
𝜇, standard deviation 𝛿 , server overloading probability P(𝑠𝑘 ) and
server energy consumption E𝑘 (U𝑘 ) is evaluated for the VM to
be embedded. Here, the mean 𝜇 indicates the average amount of
unused resource capacity available across all servers in the DC.
The standard deviation 𝛿 of residual resource capacity at the DC
measures how much the residual resource capacity deviates from
the average 𝜇. Server overloading probability P(𝑠𝑘 ) is the likeli-
hood that checks the server’s resource demands will not exceed
its available capacity, otherwise leading to potential performance
degradation. These statistics assess server overload risk and its re-
source distribution, aiding in embedding the next VDCRs associated
VMs. This approach is essential for effective resource allocation
in DCs, enhancing performance, supporting load balancing, and
minimizing performance degradation from resource contention. Us-
ing these key factors, Γk is determined from Step (16) of algorithm
1, which balances the energy consumption and the risk of server
overloading. The server overloading probability P(𝑠𝑘 ) for a server
ranges from 0 to 1. When resource demand is low, P(𝑠𝑘 ) is near
0, making it hard to distinguish between under-loaded servers. To
address this, the probability range is modified using an exponential
function, where any increase in P(𝑠𝑘 ) leads to a rapid escalation
in the objective function’s value. The parameter 𝛼 = 0.5 is em-
ployed to control the impact of resource overloading probability
on the objective function. This adjustment not only aids in accu-
rately identifying the efficient server but also contributes to the
objective of efficient energy minimization through load balancing.
Next, the server 𝑠𝑘 will be selected as the best server 𝑠𝑏𝑒𝑠𝑡 for VM
embedding, iff, Γk value is less than the initial Γmin value. This will
provide LitE to select the least energy consumed server E𝑘 (U𝑘 ) and
lowest server overloading probability P(𝑠𝑘 ) server, which helps to
achieve the desired objective from Steps (17-19) of algorithm 1. The
algorithm updates the server’s resources accordingly and marks
the VM as assigned by updating the embedding status from Steps
(20-23) of algorithm 1. Otherwise, the VDCR is marked as rejected,
and allotted resources are released from Steps (24-27) of algorithm
1. Eventually, we perform VL embedding by identifying the feasible
path using Dijkstra’s shortest path algorithm using Steps (28-30) of
algorithm 1. Otherwise, mark the VDCR as rejected, release allo-
cated resources, and move to the next VDCR for embedding from

Steps (31-35) of algorithm 1. Finally, the mapping result is captured
in M as in Step (36) of algorithm 1. The overall time complexity of
the LitE is computed as 𝑂 ( |N𝑖 | × |N𝑠 | + |L𝑖 | × |N𝑠 | log |N𝑠 |).

5 Simulation Setup and Evaluation
We have performed simulations using Mininet [16], and the source
code is available at [9]. A single-domain spine-leaf topology-based
PN with 30 servers and 36 links is used in LitE. The resource ca-
pacities of the servers are uniformly distributed in the range U[200,
1000]. The bandwidth link capacities from server to leaf switches
and from leaf switches to spine switches (in Gbps) are within the
range U[500, 1000]. Each VDCR has VMs ranging from U[2, 10],
with a link connectivity probability of 0.4, and VDCRs arrive at
Poisson-distributed 𝜆=0.4 [16]. The VM resource demand and VLs
bandwidth demand are uniformly distributed within the range U[1,
10] and U[1, 5], respectively. These experimental settings are based
on works in [16, 18]. We considered five scenarios of VDCRs [100,
200, 300, 400, 500], each running ten times. Experiments ensured
a 100% acceptance ratio as in [5] to demonstrate the energy con-
sumption across the test scenarios. To ensure an accurate and fair
evaluation of its performance, LitE is compared against objective
baselines such as (i.) CEVNE [12], (ii.) DROI [5], and (iv.) First Fit.
Fig. 3 depicts the overall energy consumption by the servers to
embed the VDCRs by different techniques. LitE consistently utilizes
the least energy and outperforms the baselines such as First Fit,
DROI, and CEVNE. This is due to LitE server selection mechanism
based on resource utilization and energy metrics, which prevent
high-energy spikes and attain effective load balancing. On the other
hand, CEVNE consumes slightly more energy consumption. This
is due to a lack of load balancing, resulting in more server con-
sumption. DROI prioritizes dynamic regions over energy efficiency,
which is the reason for its decreased performance than LitE and
CEVNE. Alternatively, First-fit uses a greedy-based strategy, lead-
ing to poor server utilization and higher energy usage than all other
approaches. Fig. 4 depicts the active node stress across different
techniques. It is the fraction of the total consumed resources to the
initially available resources at the server before embedding. In Fig.
4, LitE achieves moderate node stress by considering server utiliza-
tion during VM embedding, which distributes load more evenly
across servers. DROI and First Fit have higher node stress because
they focus on specific regions or servers, leading to imbalance.
CEVNE maintains the lowest stress but risks underutilizing server
resources. Fig. 5 depicts the active link stress across the baselines.
It is the fraction of the used bandwidth on physical links to the
total available bandwidth on those links. It refers to the stress on
physical links that are currently allocated VLs and serving VDCRs.
LitE moderates link stress by balancing the network load. DROI has
slightly higher link stress due to uneven distribution, while First Fit
exhibits the highest stress from poor server selection. CEVNE has
the least link stress but underuses physical links, leading to lower
performance. Fig. 6 illustrates the number of servers utilized across
various test cases. LitE uses fewer servers than CEVNE but slightly
more than DROI and the First-fit approach. This is because LitE
allocates server resources based on the resource overloading proba-
bility during VM embedding, optimizing for resource efficiency. Fig.
7 shows the number of links required to map VDCRs in different
scenarios. LitE evenly distributes the network load, maintaining
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Figure 3: Energy Consumption vs.
Number of VDCRs.

Figure 4: Active Node Stress vs. Num-
ber of VDCRs.

Figure 5: Active Link Stress vs. Num-
ber of VDCRs.

Figure 6: Servers used vs. Number of
VDCRs.

Figure 7: Links used vs. Number of
VDCRs.

Figure 8: Execution Time vs. Num-
ber of VDCRs.

stable physical link usage and improving performance. In contrast,
CEVNE uses more links, leading to inefficiencies, while DROI and
First-fit use fewer links, increasing node stress and energy consump-
tion and potentially lowering performance. The overall execution
time consumed across the baseline is captured in Fig. 8. LitE takes
slightly longer than CEVNE and First-fit. This is due to its focus on
finding load-balanced and energy-efficient servers during the VM
embedding process. DROI, however, experiences a sharp increase
in execution time because of its complex clustering mechanism. At
the same time, First-fit benefits from a faster execution time due to
its straightforward server selection strategy.

6 Conclusion and Future Work
This work introduces a VDCE framework LitE for minimizing en-
ergy consumption by effectively balancing load in a PN. LitE lever-
ages key factors such as server resource utilization and the proba-
bility of server overloading, thereby trying to reduce DC overall
energy consumption. Consideration of server overloading proba-
bility during VM embedding, followed by a VL embedding using
the shortest path algorithm, significantly enhances both energy
efficiency and resource management. The simulation results demon-
strate that the LitE considerably minimizes the energy consumption
in DC by 15% compared to baselines. In the future, we plan to inte-
grate LitE with software-defined networking-specific features to
validate the model’s performance in more realistic and dynamic
environments and also to test and validate the working of LitE over
commercial cloud platforms such as AWS and Azure.
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